Pseudospin-resolved transport spectroscopy of the Kondo effect in a double quantum dot.
نویسندگان
چکیده
We report measurements of the Kondo effect in a double quantum dot, where the orbital states act as pseudospin states whose degeneracy contributes to Kondo screening. Standard transport spectroscopy as a function of the bias voltage on both dots shows a zero-bias peak in conductance, analogous to that observed for spin Kondo in single dots. Breaking the orbital degeneracy splits the Kondo resonance in the tunneling density of states above and below the Fermi energy of the leads, with the resonances having different pseudospin character. Using pseudospin-resolved spectroscopy, we demonstrate the pseudospin character by observing a Kondo peak at only one sign of the bias voltage. We show that even when the pseudospin states have very different tunnel rates to the leads, a Kondo temperature can be consistently defined for the double quantum dot system.
منابع مشابه
Supplementary Information for Pseudospin Resolved Transport Spectroscopy of the Kondo Effect in a Double Quantum Dot
For all the measurements reported in the main text of this paper, we have made the voltages on the gates labeled CU and CL sufficiently negative so as to suppress inter-dot tunneling. We have confirmed that the inter-dot tunneling is negligibly small over a range of gate voltage settings. To check the inter-dot tunneling, we have measured the conductance of the dots in series, as shown in Fig. ...
متن کاملRestoring the SU(4) Kondo regime in a double quantum dot system.
We calculate the spectral density and occupations of a system of two capacitively coupled quantum dots, each one connected to its own pair of conducting leads, in a regime of parameters in which the total couplings to the leads for each dot Γ(i) are different. The system has been used recently to perform pseudospin spectroscopy by controlling independently the voltages of the four leads. For an...
متن کاملGate voltage effects in capacitively coupled quantum dots
– We study a system of two symmetrical capacitively coupled quantum dots, each coupled to its own metallic lead, focusing on its evolution as a function of the gate voltage applied to each dot. Using the numerical renormalization group and poor man’s scaling techniques, the low-energy Kondo scale of the model is shown to vary significantly with the gate voltage, being exponentially small when s...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملEffect of asymmetric quantum dot rings in electron transport through a quantum wire
The electronic conductance at zero temperature through a quantum wire with side-connected asymmetric quantum ring (as a scatter system) is theoretically studied using the non-interacting Hamiltonian Anderson tunneling method. In this paper we concentrate on the configuration of the quantum dot rings. We show that the asymmetric structure of QD-scatter system strongly influences the amplitude an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 110 4 شماره
صفحات -
تاریخ انتشار 2013